
Practical Service Placement Approach for
Microservices Architecture

Mennan Selimi∗‡, Llorenç Cerdà-Alabern∗, Marc Sánchez-Artigas†, Felix Freitag∗, Luís Veiga ‡

∗ Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
{mselimi, llorenc, felix}@ac.upc.edu

† Universitat Rovira i Virgili, Tarragona, Spain
{marc.sanchez}@urv.cat

‡ Instituto Superior Técnico (IST), INESC-ID Lisboa, Lisbon, Portugal
{luis.veiga}@inesc-id.pt

Abstract—Community networks (CNs) have gained momentum
in the last few years with the increasing number of spontaneously
deployed WiFi hotspots and home networks. These networks,
owned and managed by volunteers, offer various services to their
members and to the public. To reduce the complexity of service
deployment, community micro-clouds have recently emerged as a
promising enabler for the delivery of cloud services to community
users. By putting services closer to consumers, micro-clouds
pursue not only a better service performance, but also a low
entry barrier for the deployment of mainstream Internet services
within the CN. Unfortunately, the provisioning of the services
is not so simple. Due to the large and irregular topology, high
software and hardware diversity of CNs, it requires of a "careful"
placement of micro-clouds and services over the network.

To achieve this, this paper proposes to leverage state informa-
tion about the network to inform service placement decisions,
and to do so through a fast heuristic algorithm, which is vital to
quickly react to changing conditions. To evaluate its performance,
we compare our heuristic with one based on random placement
in Guifi.net, the biggest CN worldwide. Our experimental
results show that our heuristic consistently outperforms random
placement by 211% in terms of bandwidth gain. We quantify the
benefits of our heuristic on a real live video-streaming service,
and demonstrate that video chunk losses decrease significantly,
attaining a 37% decrease in the loss packet rate. Further, using a
popular Web 2.0 service, we demonstrate that the client response
times decrease up to an order of magnitude when using our
heuristic.

Index Terms—service placement; community networks; micro-
clouds;

I . I N T R O D U C T I O N

Since early 2000s, community networks (CNs) or “Do-It-
Yourself ” networks have gained momentum in response to
the growing demands for network connectivity in rural and
urban communities. The main singularity of CNs is that they
are built “bottom-up”, mixing wireless and wired links, with
communities of citizens building, operating and managing the
network. The result of this open, agglomerative process is
a very heterogeneous network, with self-managing links and
devices. For instance, devices are typically “low-tech”, built
entirely by off-the-shelf hardware and open source software,
which communicate over wireless links. This poses several
challenges, such as the lack of service guarantees, inefficient
use of the available resources, and absence of security, to name
a few.

Figure 1. Guifi.net inbound and outbound traffic (Feb 2014 - Feb 2016).

These challenges have not precluded CNs from flourishing
around. For instance, Guifi.net1, located in the Catalonia
region of Spain, is a successful example of this paradigm.
Guifi.net is defined as an open, free and neutral CN built
by its members. That is, citizens and organizations pool their
resources and coordinate efforts to build and operate a local
network infrastructure. Guifi.net was born in 2004, and
until today, it has grown into a network of more than 32,000
operational nodes. This makes it the largest CN worldwide [1].
Just to give some numbers, Figure 1 depicts the evolution of
the total inbound (pink) and outbound (yellow) traffic to the
Internet for the last two years. A mere inspection of this figure
tells us that Guifi.net traffic has tripled. Traffic peaks corre-
spond to the arrival of new users and deployment of bandwidth-
hungry services in the network. Actually, a significant number
of services, including GuifiTV, Graph servers, mail and game
services, are running within Guifi.net. All these services
have been provided by individuals, social groups, and small
non-profit or commercial service providers.
Guifi.net ultimate aim is to create a full digital ecosys-

tem that covers a highly localized area. But this mission is not
so simple, because a quick glance at the type of services that
users demand reveals that the percentage of Internet services
(proxies and tunnel-based) is higher than 50%. This confirms
that Guifi.net users are typically interested in mainstream
Internet services [2], which imposes a heavy burden on the
“thin” backbone links, with users experiencing high service
variability.

Among other issues, this question spurred the invention of
“alternative” service deployment models to cater for users in
Guifi.net. One of these models was that based on micro-
clouds. A micro-cloud is nothing but a platform to deliver
services to a local community of citizens within the vast CN.

1http://guifi.net/

Services can be of any type, ranging from personal storage to
video streaming and P2P-TV [3]. Observe that this model is
different from Fog computing, which extends cloud computing
by introducing an intermediate layer between devices and
datacenters. Micro-clouds take the opposite track, by putting
services closer to consumers, so that no further or minimal
action takes place in Internet. The idea is to tap into the shorter,
faster connectivity between users to deliver a better service and
alleviate overload in the backbone links.

This approach, however, poses new challenges, such as that
of the optimal placement of micro-clouds within the CN to
overcome suboptimal performance. And Guifi.net is not
an exception. Obviously, a placement algorithm that is agnostic
to the state of the underlying network may lead to important
inefficiencies. Although conceptually straightforward, it is
challenging to calculate an optimal decision due to the dynamic
nature of CNs and usage patterns.

This paper tries to answer the following two research
questions:

1) First, given that sufficient state information is in place, is
network-aware placement enough to deliver satisfactory
performance to CN users?

2) Second, can the redundant placement of services further
improve performance?

To answer these questions, we contribute in this work a new
placement heuristic called BASP (Bandwidth and Availability-
aware Service Placement), which uses the state of the under-
lying CN to optimize service deployment. In particular, it
considers two sources of information: i) network bandwidth and
ii) node availability to make optimized decisions. Compared
with brute-force search, which it takes order of hours to
complete, BASP runs much faster; it just takes a few seconds,
while achieving equally good results.

Our results show that BASP consistently outperforms random
placement, the existing in-place and naturally fast strategy in
Guifi.net, by 211% with respect to end-to-end bandwidth.
Driven by these findings, we then ran BASP in a real CN and
quantified the boost in performance achieved after deploying a
live video-streaming and Web 2.0 service according to BASP.
Our experimental results demonstrate that with BASP, the
video chunk loss in the peer side decreased up to a 3% point
reduction, i.e., worth a 37% reduction in the loss packet rate,
which is a significant improvement. Furthermore, when using
the BASP with the Web 2.0 service (i.e., social networking
service), the client response times decreased up to an order of
magnitude.

The rest of the paper is organized as follows. In Section
II we describe and characterize the performance of the QMP
network. Section III defines our system model and presents our
BASP heuristic. In Section IV we discuss the evaluation results.
In Section V we present and discuss the real deployment
experiments with a video-streaming and Web 2.0 service.
Section VI describes related work and section VII concludes
and discusses future research directions.

I I . N E T W O R K C H A R A C T E R I Z AT I O N

Our service placement strategy considers two aspects: node
availability and network bandwidth. As the first step, it is vital

Figure 2. QMP outdoor devices

0.0

0.5

1.0

1.5

0 1 2 3
x (km)

y(
km

)

UPCc6-65ab
BCNevaristoarnus5Rd5-bdac

Figure 3. QMP network topology

to understand the behaviour of these two dimensions in a real
CN. We achieve this by characterizing a production wireless
CN such as a QMP (Quick Mesh Project) network over a five-
month period. Our goal is to determine the key features of
the network (e.g. bandwidth distribution) and its nodes (e.g.
availability patterns) that could help us to design new heuristics
for intelligent service placement in CNs.

A. QMP Network: A Brief Background

QMP network, began deployment in 2009 in a quarter of
the city of Barcelona, Spain, called Sants, as part of the Quick
Mesh Project (QMP)2. QMP is an urban mesh network and it is
a subset of the Guifi.net CN sometimes called GuifiSants.
At the time of writing, QMP has around 71 nodes. There are
two gateways (proxies) distributed in the network that connect
QMP to the rest of Guifi.net and Internet (see Figure 3). A
detailed description of QMP can be found in [4].

Typically, QMP users have an outdoor router (OR) with a
Wi-fi interface on the roof, connected through Ethernet to an
indoor AP (access point) as a premises network. The most
common OR in QMP is the NanoStation M5 as shown in
Figure 2, which is used to build links on the network and
integrates a sectorial antenna with a router furnished with
a wireless 802.11an interface. Some strategic locations have
several NanoStations, that provide larger coverage. In addition,
some links of several kilometers are set up with parabolic
antennas (NanoBridges). ORs in QMP are flashed with the
Linux distribution which was developed inside the QMP project
which is a branch of OpenWRT3 and uses BMX6 as the mesh
routing protocol [5].

The user devices connected to the ORs consists of Minix
Neo Z64 and Jetway mini PCs, which are equipped with an
Intel Atom CPU. They run the Cloudy operating system, which
allows running services in a Docker containers.

Methodology and data collection: Measurements have
been obtained by connecting via SSH to each QMP OR
and running basic system commands available in the QMP
distribution. This method has the advantage that no changes
or additional software need to be installed in the nodes. Live
measurements have been taken hourly over a five-month period,
starting from July 2016 to November 2016, and our live
monitoring page and data is publicly available in the Internet4.
We use this data to analyse main aspects of QMP network.

2http://qmp.cat/Home
3https://openwrt.org/
4http://dsg.ac.upc.edu/qmpsu/index.php

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80 90 100
Availability [%]

EC
D

F

Figure 4. QMP node availability

Number of nodes

Bidirectional links

Unidirectional links

66
68
70
72
74
76

160
170
180
190
200

20
30
40
50
60

0 500 1000 1500 2000 2500
Capture

N
um

be
r

Figure 5. Number of nodes and links

B. Node Availability

The quality and state of the heterogeneous hardware used
in QMP, influences the stability of the links and network
performance. Availability of the QMP nodes is used as an
indirect metric for the quality of connectivity that new members
expect from the network.

Figure 4 shows the Empirical Cumulative Distribution Func-
tion (ECDF) of the node availability collected for a period
of five months. We define the availability of a node as the
percentage of times that the node appears in a capture, counted
since the node shows up for the first time. A capture is an
hourly network snapshot that we take from the QMP network
(we took 2718 captures in total). Figure 4 reveals that 25% of
the nodes have an availability lower than 90% and others nodes
left have an availability between 90−100%. In a CN such as
QMP, users do not tend to deliberately reboot the device unless
they have to perform an upgrade, which is not very common.
Hence, the percentage of times that node appears in a capture
is a relatively good measure of the node availability due to
random failures.

When we compare the availability distribution reported in
a similar study and environment on PlanetLab [6], a QMP
node has a higher probability of being disconnected or not
reachable from the network. The fact that PlanetLab showed a
higher average availability (i.e., sysUpTime) on its nodes may
be because it is an experimental testbed running on much more
stable computers and environment. Furthermore, the QMP
members are not only responsible for the maintenance of their
nodes, but also for ensuring a minimum standard of connectivity
with other parts of the network.

Figure 5 depicts the number of nodes and links during
captures. Figure shows that QMP is growing. Overall, 77
different nodes were detected. From those, 71 were alive during
the entire measurement period. Around 6 nodes were missed
in the majority of the captures. These are temporarily working
nodes from other mesh networks and laboratory devices used
for various experiments. Figure 5 also reveals that on average
175 of the links used between nodes are bidirectional and 34
are unidirectional. For bidirectional links, we count both links
in opposite direction as a single link.

In summary, node availability is important to identify those
nodes that will minimize service interruptions over time. Based
on the measurements, we assign availability scores to each
of the nodes. The highly available nodes are the possible
candidates for deploying on them the micro-clouds.

C. Bandwidth characterization
A significant amount of services that run on QMP and

Guifi.net network are network-intensive (bandwidth and
delay sensitive), transferring large amounts of data between the
network nodes [2]. The performance of such kind of services
depends not just on computational and disk resources but also
on the network bandwidth between the nodes on which they
are deployed. Therefore, considering the network bandwidth
when placing services in the network is of high importance.

First, we characterize the wireless links of the QMP network
by studying their bandwidth. Figure 6 shows the average
bandwidth distribution of all the links. The figure shows that the
link throughput can be fitted with a mean of 21.8 Mbps. At the
same time Figure 6 reveals that the 60% of the nodes have 10
Mbps or less throughput. The average bandwidth of 21.8 Mbps
obtained in the network allows many popular bandwidth-hungry
service to run without big interruptions. This high performance
can be attributed to the 802.11an devices used in the network.

In order to see the variability of the bandwidth, Figure 7
shows the bandwidth averages in both directions of the three
busiest links. Upload operation is depicted with a solid line
and download operation with a dashed line. The nodes of
three busiest links are highlighted on the top of the figure. We
noted that the asymmetry of the bandwidths measured in both
directions it not always due to the asymmetry of the user traffic
(not shown in the graphs). For instance, node GSgranVia255,
around 6am, when the user traffic is the lowest and equal in both
directions, the asymmetry of the links bandwidth observed in
Figure 7 remains the same. We thus conclude that even though
bandwidth time to time is slightly affected by the traffic, the
asymmetry of the links that we see might be due to the link
characteristics, as level of interferences present at each end, or
different transmission powers.

In order to measure the link asymmetry, Figure 8 depicts
the bandwidth measured in each direction. A boxplot of
the absolute value of the deviation over the mean is also
depicted on the right. The figure shows that around 25% of
the links have a deviation higher than 40%. At the same
time, the other 25% of the links have a deviation less than
10%. After performing some measurements regarding the
signaling power of the devices, we discovered that some of the
community members have re-tuned the radios of their devices
(transmission power, channel and other parameters), trying to
achieve better performance, thus, changing the characteristics
of the links. Thus, we can conclude that the symmetry of the
links, an assumption often used in the literature of in wireless
mesh networks, is not very realistic for our case and service
placement algorithms unquestionably need to take into account.

D. Discussion
Here are some observations (features) that we have derived

from the measurements in QMP network:
Dynamic Topology: QMP network is highly dynamic and

diverse due to many reasons, e.g., its community nature in
an urban area; its decentralised organic growth with extensive
diversity in the technological choices for hardware, wireless
media, link protocols, channels, routing protocols etc.; its mesh
nature in the network etc. The current network deployment

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100
Link throughput [Mbps] (log10 scale)

E
C

D
F

Figure 6. Bandwidth distribution

GSgV-nsl-b828/GSgranVia255nl-c493

GSgranVia255-db37/GScallao3Rd1-9090

UPCc6-ab/UPC-ETSEIB-NS-7094

22.5
25.0
27.5

10
15
20
25

18
20
22
24

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of the day

L
in

k
th

ro
ug

hp
ut

[M
bp

s]

Figure 7. Bandwidth in the three busiest links

0

10

20

30

40

50

0 10 20 30 40 50 60
Throughput [Mbps]

T
hr

ou
gh

pu
t[

M
bp

s]

0

10

20

30

40

50

60

70

80

90

100

Deviation

%

Figure 8. Bandwidth asymmetry

model is based on geographic singularities rather than QoS.
The network is not scale-free. The topology is organic and
different w.r.t. conventional ISP network.

Non-uniformly distributed resources: The resources are
not uniformly distributed in the network. Wireless links are
with asymmetric quality for services (25% of the links have
a deviation higher than 40%). We observed a highly skewed
traffic pattern and highly skewed bandwidth distribution (Figure
6).

Currently used organic (random) placement scheme in QMP
and Guifi.net in general, is not sufficient to capture the
dynamics of the network and therefore it fails to deliver the
satisfying QoS. The strong assumption under random service
placement, i.e., uniform distribution of resources, does not hold
in such environments.

Furthermore, the services deployed have different QoS re-
quirements. Services that require intensive inter-component
communication (e.g streaming service), can perform better if
the replicas (service components) are placed close to each
other in high capacity links [3]. On other side, bandwidth-
intensive services (e.g., distributed storage, video-on-demand)
can perform much better if their replicas are as close as possible
to their final users (e.g., overall reduction of bandwidth for
service provisioning) [7].

Our goal is to build on this insight and design a network-
aware service placement algorithm that will improve the service
quality and network performance by optimizing the usage of
scarce resources in CNs such as bandwidth.

I I I . C O N T E X T A N D P R O B L E M

First we describe our model for network and service graph.
Subsequently we build on this to describe the service placement
problem. The symbols used are listed in Table I.

A. Network Graph
The deployment and sharing of services in CNs is made

available through community network micro-clouds (CNMCs).
The idea of CNMC is to place the cloud at the edge closer to
community end-users, so users can have fast and reliable access
to the service. To reach its full potential, a CNMC needs to be
carefully deployed in order to utilize the available bandwidth
resources.

In a CNMC, a server or low-power device (i.e, home
gateway) is directly connected to the wireless base-station

(ORs) providing cloud services to users that are either within
a reasonable distance or directly connected to base-station.

We call the CN the underlay to distinguish it from the
overlay network which is built by the services. The underlay
network is supposed to be connected and we assume each node
knows whether other nodes can be reached (i.e., next hop is
known). We can model the underlay graph as: G← (N,E)
where N is the set of nodes connected to the outdoor routers
(ORs) present in the CNs and E is the set of wireless links that
connects them. Physical links between nodes are characterized
by a given bandwidth (Bi). Furthermore, each link has a
bandwidth capacity (Be). Each node in the network has an
availability score (Rn) derived from the real measurements in
the QMP network.

B. Service Graph
The services aimed in this work are at infrastructure level

(IaaS), as cloud services in current dedicated datacenters.
Therefore, the services are deployed directly over the core
resources of the network and accessed by clients. Services can
be deployed by QMP users or administrators.

The services we consider in this work are distributed services
(i.e., independently deployable services as in the Microservices
Architecture5). The distributed services can be composite
services (non-monolithic) built from simpler parts, e.g., video
streaming (built from the source and peers component), web
service (built from database, memcached and client component)
etc. In the real deployment, one service component corresponds
to one Docker container. These parts or components of the
services create an overlay and interact with each other to offer
more complex services. Bandwidth requirement between two
services s1 and s2 is given by bs1,s2. At most k copies can be
placed for each service s.

A service may or may not be tied to a specific node of the
network. Each node can host one or more type of services. In
this work we assume an offline service placement approach
where a single or a set of applications are placed "in one shot"
onto the underlying physical network. We might rearrange
(migrate) the placement of the same service over the time
because of the service performance fluctuation (e.g. weather
conditions, node availability, changes in use pattern, and etc.).
We do not consider real-time service migration.

5http://microservices.io/patterns/microservices.html

C. Service Placement Problem
The concept of service and network graph allows us to

formulate the problem statement more precisely as: "Given
a service and network graph, how to place a service on a
network as to maximize user QoS and QoE, while satisfying a
required level of availability for each node (N) and considering
a maximum of k service copies ?

Let Bi j be the bandwidth of the path to go from node i
to node j. We want a partition of k clusters (i.e., services) :
C←C1,C2,C3, ...,Ck of the set of nodes in the mesh network.
The cluster head i of cluster Ci is the location of the node
where the service will be deployed. The partition maximizing
the bandwidth from the cluster head to the other nodes in the
cluster is given by the objective function:

argmaxC

k

∑
i=1

∑
j∈Ci

Bi j (1)

with respect to the following constraints:
1) The total bandwidth used per link cannot exceed the total

link capacity:

∀e ∈ E : ∑
s1,s2∈S

Xs1,s2(e)×bs1,s2 ≤ Be (2)

2) Availability-awareness: the node availability should be
higher than the predefined threshold l :

∀n ∈ N : ∑
n∈N

Rn ≥ l (3)

3) Admission control: At most, k copies can be placed for
each service:

|D|= k (4)

D. Proposed Algorithm: BASP
Solving the problem stated in Equation 1 in brute force

for any number of N and k is NP-hard and very costly. The
naive brute force method can be estimated by calculating
the Stirling number of the second kind [8] which counts
the number of ways to partition a set of n elements into k
nonempty subsets, i.e., 1

k! ∑
k
j=0(−1) j−k

(n
k

)
jn ⇒ O(nkkn). Thus,

due to the obvious combinatorial explosion, we propose a low-
cost and fast heuristic called BASP. The BASP (Bandwidth

Table I
I N P U T A N D D E C I S I O N VA R I A B L E S

Symbol Description
N set of physical nodes in the network
E set of edges (physical links) in the network
S set of services
D set of service copies
k max number of service copies

Be bandwidth capacity of link e
bs1,s2 bandwidth requirement between services s1 and s2

Rn Availability of node n
l Availability threshold

Xs1,s2
use of physical link e by at least one service for the
placement of virtual link between s1 and s2, 1 iff placed

Algorithm 1 B A S P
Require: G(N,E) . Network graph

C←C1,C2,C3, ...,Ck . k partition of clusters
Bi . bandwidth of node i
Rn,l . availability of node n, l availability threshold

1: procedure P E R F O R M K M E A N S(G,k)
2: if Rn ≥ l then
3: return C
4: end if
5: end procedure
6: procedure F I N D C L U S T E R H E A D S(C)
7: clusterHeads← list()
8: for all k ∈C do
9: for all i ∈Ck do

10: Bi← 0
11: for all j ∈ setdi f f (C, i) do
12: Bi← Bi + estimate.route.bandw(G, i, j)
13: end for
14: clusterHeads←maxBi
15: end for
16: end for
17: return clusterHeads
18: end procedure
19: procedure R E C O M P U T E C L U S T E R S(clusterHeads,G)
20: C′ ← list()
21: for all i ∈ clusterHeads do
22: clusteri← list()
23: for all j ∈ setdi f f (G, i) do
24: B j← estimate.route.bandw(G, j, i)
25: if B j is best from other nodes i then
26: clusteri← j
27: end if
28: C′ ← clusteri
29: end for
30: end for
31: return C′
32: end procedure

and Availability-aware Service Placement) allocates services
taking into account the bandwidth of the network and the node
availability.

Our BASP algorithm (see Algorithm 1) runs in three phases:

1) Phase 1: K-Means: Initially, we use the naive K-Means
partitioning algorithm in order to group nodes based
on their geo-location. The idea is to get back clusters
of nodes that are close to each other. The K-Means
algorithm forms clusters of nodes based on the Euclidean
distances between them, where the distance metrics in
our case are the geographical coordinates of the nodes.
In traditional K-Means algorithm, first, k out of n nodes
are randomly selected as the cluster heads (centroids).
Each of the remaining nodes decides its cluster head
nearest to it according to the Euclidean distance. After
each of the nodes in the network is assigned to one of
k clusters, the centroid of each cluster is re-calculated.
Each cluster contains a full replica of a service, i.e., the

algorithm in this phase partitions the network topology
into k (maximum allowed number of service replicas)
clusters. Grouping nodes based on geo-location is in
line with how the QMP is organized. The nodes in QMP
are organized into a tree hierarchy of zones. A zone can
represent nodes from a neighborhood or a city. Each zone
can be further divided in child zones that cover smaller
geographical areas where nodes are close to each other.
From the service perspective we consider placements
inside a particular zone. We use K-Means with geo-
coordinates as an initial heuristic for our algorithm. As
an alternative, clustering based on network locality can
be used. Several graph community detection techniques
are available for our environment. [9].

2) Phase 2: Aggregate Bandwidth Maximization: The
second phase of the algorithm is based on the concept
of finding the cluster heads maximizing the bandwidth
between them and their member nodes in the clusters
Ck formed in the first phase. The bandwidth between
two nodes is estimated as the bandwidth of the link
having the minimum bandwidth in the shortest path. The
cluster heads computed are the candidate nodes for the
service placement. This is plotted as Naive K-Means in
the Figure 9.

3) Phase 3: Cluster Re-Computation: The third and
last phase of the algorithm includes reassigning the
nodes to the selected cluster heads having the maximum
bandwidth, since the geo-location of nodes in the clusters
formed during phase one is not always correlated with
their bandwidth. This way the clusters are formed based
on nodes bandwidth. This is plotted as BASP in the
Figure 9.

Complexity:
The complexity of the BASP is as follows: for BASP, finding

the optimal solution to the K-means (i.e., phase one) clustering
problem if k and d (the dimension) are fixed (e.g., in our case
n = 71, and d = 2), the problem can be exactly solved in time
O(ndk+1 logn), where n is the number of entities to be clustered.
The complexity for computing the cluster heads in phase two is
O(n2), and O(n) for the reassigning the clusters in phase three.
Therefore, the overall complexity of BASP is polylogarithmic
O(n2k+1 logn), which is significantly smaller than the brute
force method and thus practical for commodity processors.

I V. E VA L U AT I O N

A. Setup

We take a network snapshot (capture) from 71 physical nodes
of the QMP network regarding the bandwidth of the links6 and
node availability. The node and bandwidth data obtained has
been used to build the topology graph of the QMP. The QMP
topology graph is constructed by considering only operational
nodes, marked in "working" status, and having one or more
links pointing to another node. Additionally, we have discarded
some disconnected clusters. The links are bidirectional and
unidirectional, thus we we use a directed graph. The nodes of

6http://tomir.ac.upc.edu/qmpsu/index.php?cap=56d07684

QMP consists of Intel Atom N2600 CPU, 4GB of RAM and
120 GB of disk space.

Our experiment is comprised of 5 runs and the presented
results are averaged over all the runs. Each run consists of 15
repetitions.

B. Comparison
To emphasise the importance of the different phases of

Algorithm 1, we compare in this section the two phases of our
heuristic with Random Placement, i.e., the default placement
at QMP.
Random Placement: Currently, the service deployment (much
as network deployment) at QMP is not centrally planned but
initiated individually by the CN members. Public, user and
community-oriented services are placed randomly on super-
nodes and users’ premises, respectively. The only parameter
taken into account when placing services is that the devices
must be in “production” state. The network is not taken into
consideration at all. All nodes in the production state appear
equally to the users.
Naive K-Means Placement: This corresponds to the second
phase of the Algorithm 1. The service is placed on the node
having the maximum bandwidth on the initial clusters formed
by K-Means. We limit the choice of the cluster heads to be
inside the sets of clusters obtained using K-Means.
BASP Placement: It includes the three phases of the Algo-
rithm 1. The service is placed on the node having the maximum
bandwidth after the clusters are re-computed.

C. Results
Figure 9 depicts the average bandwidth to the cluster

heads obtained with the Random, Naive K-Means and the
BASP algorithm. This figure reveals that for any number of
services k, BASP outperforms both Naive K-Means and Random
placement. For k = 2, the average bandwidth to the cluster
heads is increased from 18.3 Mbps (Naive K-Means) to 27.7
Mbps (BASP), which represents a 50% improvement. The
biggest increase of 67% is achieved when k = 7. On average,
when having up to 7 services in the network, the gain of BASP
over Naive K-Means is of 45%. Based on the observations
from Figure 9, the gap between the two algorithms grows as
k increases. We observe that k will increase as the network
grows. And hence, BASP will presumably render better results
for larger networks than the rest of strategies.

Regarding the comparison between BASP and Random place-
ment, we find that Random placement leads to an inefficient
use of network’s resources, and consequently to suboptimal
performance. As depicted in the Figure 9, the average gain of
BASP over naive Random placement is 211%.

Comparison to the optimal solution. Note that our heuristic
enables us to select cluster heads that provide much higher
bandwidth than any other random or naive approach. But, if
we were about to look for the optimum bandwidth within the
clusters (i.e., optimum average bandwidth for the cluster), then
this problem would be NP-hard. The reason is that finding
the optimal solution entails running our algorithm for all
the combinations of size k from a set of size n. This is a
combinatorial problem that becomes intractable even for small

 k=1 k=2 k=3 k=5 k=7
Number of services k

0

10

20

30

40

50
Av

era
ge

 ba
nd

wid
th

to
the

 clu
ste

r h
ea

d (
Mb

ps)
RandomQMP
NaiveKMeans
BASP

Figure 9. Average bandwidth to the cluster heads

sizes of k or n (e.g., k = 5, n = 71). For instance, if we wanted
to find the optimum bandwidth for a cluster of size k = 3,
then the algorithm would need to run for every possible (non-
repeating) combination of size 3 from a set of 71 elements,
i.e., choose(71,3) = 57K combinations. We managed to do so
and found that the optimum average was 62.7 Mbps. For k = 2,
the optimum was 49.1 Mbps. For k = 1, it was 16.9 Mbps.

The downside was that, the computation of the optimal solu-
tion took very long time in a commodity machine. Concretely,
it took 5 hours for k = 3 and 30 minutes for k = 2. Instead,
BASP spent only 23 seconds for k = 3 and 15 seconds for k = 2.
Table II shows the improvement of BASP over Random and
Naive K-Means. To summarize, BASP is able to achieve good
bandwidth performance with very low computation complexity.

Correlation with centrality metrics. Table II shows some
centrality measures and some graph properties obtained for
each cluster head. Further, Figure 10 shows the neighborhood
connectivity graph of the QMP network. The neighborhood
connectivity of a node v is defined as the average connectivity
of all neighbors of v. In the figure, nodes with low neigh-
borhood connectivity values are depicted with bright colors
and high values with dark colors. It is interesting to note that
some the nodes with the highest neighborhood connectivity
are those chosen by BASP as cluster heads. The cluster heads
(for k = 2 and k = 3) are illustrated with a rectangle in the
graph. A deeper investigation into the relationship between
service placement and network topological properties is out
of the scope of this paper and will be reserved as our future
work.

V. E X P E R I M E N TA L E VA L U AT I O N

A. Cloudy: A Service Hub for the Micro-Clouds

In order to foster the adoption and transition of the commu-
nity micro-cloud environment, we provide a community cloud
distribution, codenamed Cloudy7. This distribution contains
the platform and application services of the community cloud
system. Cloudy is the core software of our micro-clouds,
because it unifies the different tools and services of the cloud
system in a Debian-based Linux distribution. Cloudy is open-
source and can be downloaded from public repositories8.

7http://cloudy.community/
8http://repo.clommunity-project.eu/images/

16

5

17

52
19

43

4115

36

18 47
1

14 22
4 20 3

13

24
40

49

48

45
25

44
8

10

9

7

11

53 2 6

29

28

39

26 30

33
31

32

34

27

38

0
37

50

35
51

42

12

46

21

23

Figure 10. Neighborhood connectivity
graph of the QMP network

Web interface

ConsoleService Layer

Streaming Storage Network

Pe
er

St
re

am
er

G
Vo

D

Vo
IP

Serf
Avahi

Ta
ho

e-
LA

FS

Sy
nc

th
in

g

W
eb

D
AV

Pr
ox

y3

SN
P

Se
rv

ic
e

D
N

S
Se

rv
ic

e

Network Coordination

Service
Discovery

Service
 Announcement

Community Network

API

BASP

User

CLOUDY

Figure 11. Cloudy architecture

Cloudy’s main components can be considered a layered
stack, with services residing both inside the kernel and at the
user level. Figure 11 reports some of the available services
running on Docker containers. Cloudy includes a tool for users
to announce and discover services in the micro-clouds based on
Serf, which is a decentralized solution for cluster membership
and orchestration. On the network coordination layer, having
sufficient knowledge about the underlying network topology,
BASP decides about the placement of the service which then is
announced via Serf as shown in Figure 11. Thus, the service
can be discovered by the other users.

B. Evaluation in a Real Production Community Network

In order to understand the gains of our network-aware service
placement algorithm in a real production CN, we deploy our
algorithm in real hardware connected to the nodes of the QMP
network, located in the city of Barcelona. We concentrate
on benchmarking two of the most popular network-intensive
applications: Live-video streaming service, and Web 2.0 Service
performed by the most popular websites.

1) Live-video streaming service: PeerStreamer9, an open
source live P2P video streaming service, has been paradig-
matically established as the live streaming service in Cloudy.
This service is based on chunk diffusion, where peers offer
a selection of the chunks they own to some peers in their
neighborhood. A chunk consists of a part of the video to
be streamed (by default, this is one frame of the video).
PeerStreamer differentiates between a source node and a peer
node. A source node is responsible for converting the video
stream into chunks and sending to the peers in the network.
In our case, both the source nodes and peers run in a Docker
containers atop the QMP nodes.
Setup: We use 20 real nodes connected to the wireless
nodes of QMP. These nodes are co-located in either users
homes (as home gateways, set-top-boxes, etc.) or within other
infrastructures distributed around the city of Barcelona. They
run the Cloudy operating system. As the controller node, we
leverage the experimental infrastructure of Community-Lab10.
Community-Lab provides a central coordination entity that
has knowledge about the network topology in real time and

9http://peerstreamer.org/
10https://community-lab.net/

